Consensus sequences improve PSI-BLAST through mimicking profile–profile alignments
نویسندگان
چکیده
Sequence alignments may be the most fundamental computational resource for molecular biology. The best methods that identify sequence relatedness through profile-profile comparisons are much slower and more complex than sequence-sequence and sequence-profile comparisons such as, respectively, BLAST and PSI-BLAST. Families of related genes and gene products (proteins) can be represented by consensus sequences that list the nucleic/amino acid most frequent at each sequence position in that family. Here, we propose a novel approach for consensus-sequence-based comparisons. This approach improved searches and alignments as a standard add-on to PSI-BLAST without any changes of code. Improvements were particularly significant for more difficult tasks such as the identification of distant structural relations between proteins and their corresponding alignments. Despite the fact that the improvements were higher for more divergent relations, they were consistent even at high accuracy/low error rates for non-trivially related proteins. The improvements were very easy to achieve; no parameter used by PSI-BLAST was altered and no single line of code changed. Furthermore, the consensus sequence add-on required relatively little additional CPU time. We discuss how advanced users of PSI-BLAST can immediately benefit from using consensus sequences on their local computers. We have also made the method available through the Internet (http://www.rostlab.org/services/consensus/).
منابع مشابه
Powerful fusion: PSI-BLAST and consensus sequences
MOTIVATION A typical PSI-BLAST search consists of iterative scanning and alignment of a large sequence database during which a scoring profile is progressively built and refined. Such a profile can also be stored and used to search against a different database of sequences. Using it to search against a database of consensus rather than native sequences is a simple add-on that boosts performance...
متن کاملA comparison of scoring functions for protein sequence profile alignment
MOTIVATION In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSI-BLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTAL...
متن کاملProfile alignment scoring functions A comparison of scoring functions for protein sequence profile alignment
Motivation: In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSIBLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTAL...
متن کاملPSI-Search: iterative HOE-reduced profile SSEARCH searching
UNLABELLED Iterative similarity searches with PSI-BLAST position-specific score matrices (PSSMs) find many more homologs than single searches, but PSSMs can be contaminated when homologous alignments are extended into unrelated protein domains-homologous over-extension (HOE). PSI-Search combines an optimal Smith-Waterman local alignment sequence search, using SSEARCH, with the PSI-BLAST profile...
متن کاملCOACH: profile-profile alignment of protein families using hidden Markov models
MOTIVATION Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007